

Aquaculture America 2012

RECENT DEVELOPMENTS IN BIOFLOC TECHNOLOGY IN SHRIMP CULTURE AND ITS ECONOMICS

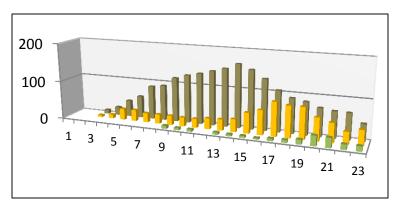
Nyan Taw, Ph.D.

nyan.taw@bluearchipelago.com

February 29 - March 2 Paris Hotel and Casino Las Vegas, Nevada USA

INTRODUCTION

Biofloc technology has become a popular technology in the farming of Pacific white shrimp, *Litopenaeus vannamei*. The basic technology was developed by Professor Yoram (2000, 2005a&b) in Israel and initially implemented commercially in Belize by Belize aquaculture (McIntosh, 2000a, b & c, 2001). It also has been applied with success in shrimp farming in Indonesia, Malaysia (Nyan Taw 2004, 2005, 2008, 2010 &2011). The combination of two technologies, partial harvesting and biofloc, has been studied in northern Sumatra, Indonesia (Nyan Taw 2008 et. al). The system has been successfully incorporated in biosecure modular culture system (Nyan Taw, 2011 et. at).

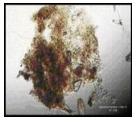

With emerging viral problems and rising costs for energy, biofloc technology appears to be an answer for sustainable production at lower cost. The technology has applied also in super-intensive raceways to produce more than 9 kg shrimp/ m3. The raceway applications have supported nursery and growout to shrimp broodstock rearing and selection of family lines. Presently, a number of studies by major universities and private companies are using biofloc as a single cell protein source in aquafeeds.

In any aquaculture business as defined by economics - savings are also considered as profit. Savings such as from feed, time, energy, stability and sustainability can be calculated as profit. It seems biofloc technology has these properties.

SHRIMP FARMING IN BIOFLOC

SUMMARY

- 1. High stocking density over 130 150 PL10/m2
- 2. High aeration 28 to 32 HP/ha PWAs
- 3. Paddle wheel position in ponds (control biofloc & sludge by siphoning)
- 4. Biofloc control at <15 ml/L
- 5. HDPE / Concrete lined ponds
- 6. Grain (pellet)
- 7. Molasses
- C&N ratio >15
- 9. Expected production 20-25 MT/ha/crop with 18-20 gms shrimp


Feed & grain application and biofloc

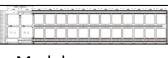
Grain pellet

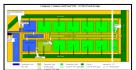


Red Vannamei

TECHNOLOGY DEVELOPMENT

Farm Construction & Design

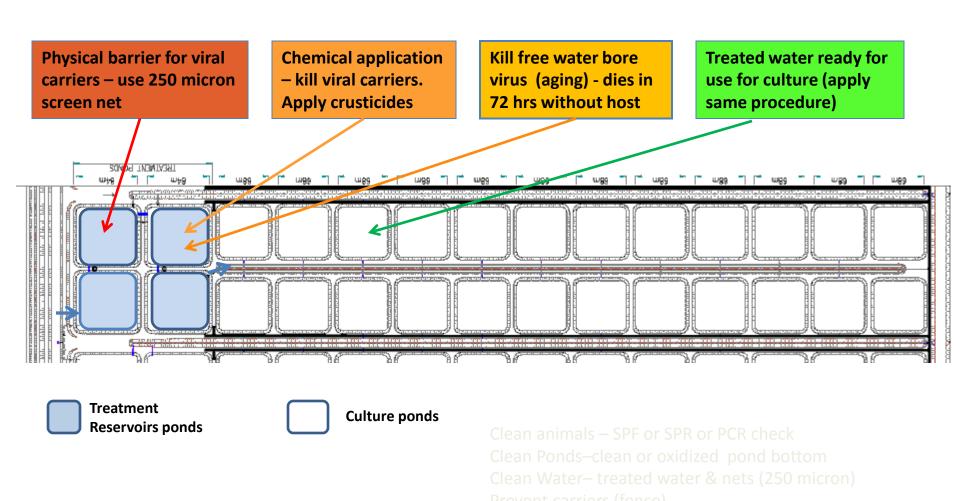

Module



Module

Module

Nyan Taw ,WAS 2005 Bali Farmer session 2005


Nyan Taw, Shrimp Farm Indonesia GAA 2005

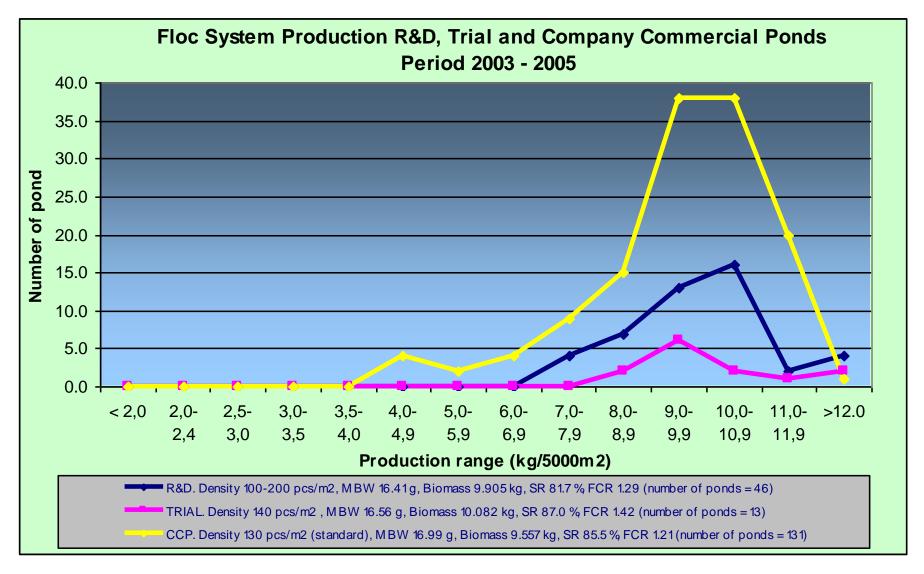
Nyan Taw ,et.at Reengineering Dipasena GAA 2008

Nyan Taw, et al Malaysian shrimp farm redesign GAA 2011

MODULE OPERATION

Water treatment system (Control WSSV)

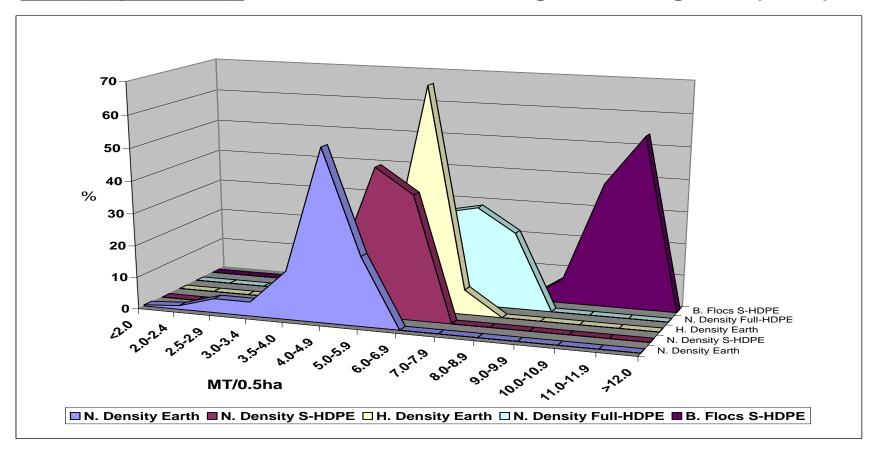
FIRST BIOFLOC COMMERCIAL TRAIL


Indonesia

Description	Average Per Code						
Fry Code	(12) A416	(12) A417	(12) A418	(11) A420	(12) A539,A416	Average	
Total No ponds	5	6	7	5	3	26	
STD(pcs/m ²)	131	131	130	131	131	131	
DOC (day)	148	146	150	146	146	147	
Biomass(kg)	11,337	10,587	10,650	10,886	11,256	10,883	
MBW (g)	16.78	17.66	17.61	17.89	16.38	17.4	
CV (%)	24.2	21.2	26.8	21.4	21.3	23.0	
FCR (- GP)	1.01	1.09	1.08	1.03	0.98	1.04	
FCR (+ GP)	1.69	1.83	1.82	1.70	1.64	1.73	
SR (%)	100.0	91.6	92.8	92.8	105.0	95.9	
ADG (g/day)	0.11	0.12	0.12	0.12	0.11	0.12	
Production (kg/ha/crop)	2,267	2,118	2,130	2,177	2,251	2,176	

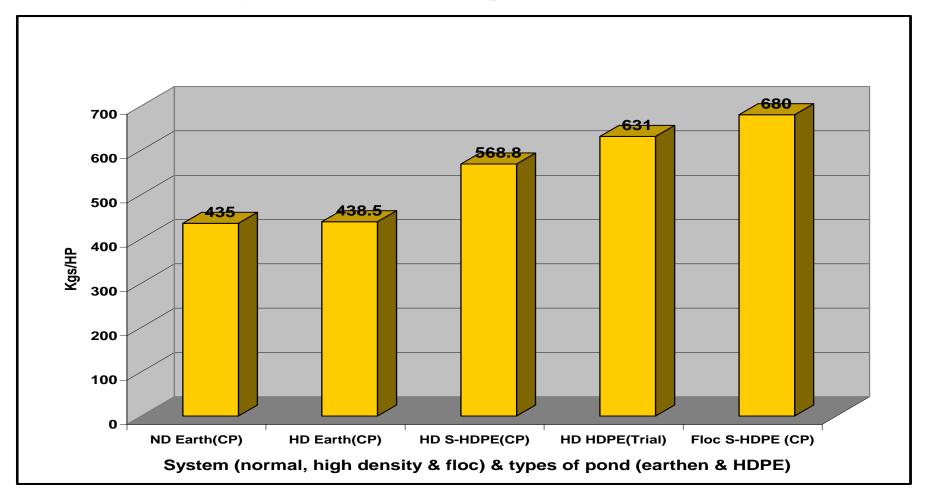
Semi-lined 0.5 ha ponds

PRODUCTION PERFORMANCE


Indonesia

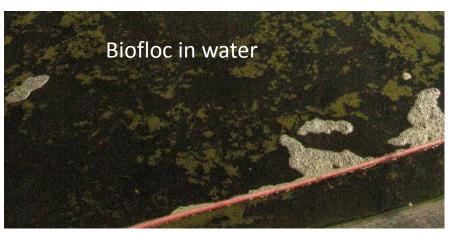
PRODUCTION EFFICIENCY

Efficiency: Increased from 9.0 MT to 21.8 MT/ ha pond.


Carrying capacity: Increased from 430 kgs to 680 kgs/HP (PWA)

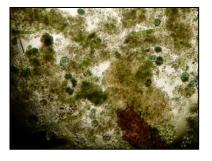
CARRYING CAPACITY

Pond type & system (L. vannamei)


Increased from 430 to 680 shrimp kgs/HP (PWA)

BIOFLOC & PARTIAL HARVEST

Indonesia


Nyan Taw, et al, GAA Sep/Oct 2008

Brown biofloc

Green biofloc

Nyan Taw. et al WAS 2009 Mexico

BIOFLOC & PARTIAL HARVEST PERFORMANCE, Indonesia

Partial Harvest Performance with Bio Floc Technology (February - July 2008)

Pand/size Sustan Energy Input		y Input	Density	Partial	Harvest			Production		FCR		SR	Energy Efficie	ency -kg/HP		
Pond/size	System	(Pond)	(Ha)	(M2)	Рапіаі	DoC	Biomas (Kg)	Size No/kg	MBW (gr)	Kg/Pd	Kg/Ha	GP	Feed	(%)	Std Capacity	Efficiency
1	Phyto	4C (D)A()	07 (D\A()	100	1	118	434	47	21.28				4.00	75 70	560*	700
5896 m2		16 (PW)	27 (PW)		Final	127	11,027	43	23.26	11,461	19,439	0	1.60	75.72	560"	720
2				145	1	108	2,092	59	16.95					84.07		
_	Bio Floc	18 (PW)	31 (PW)	143	2	121	1,016	55	18.18	13,508	22,910	0.59	1.20	04.07	680*	739
5896 m2					Final	131	10,400	52	19.23							
3				146	1	109	2,108	56	17.86					80.95		
	Bio Floc	18 (PW)	30 (PW)	140	2	122	999	50	20.00	14,386	24,219	0.56	1.14	00.00	680*	807
5940 m2					Final	130	11,279	47	21.28							
4	Bio Floc	16 (PW)	34 (PW)	257	1	85	1,962	93	10.75							
4704 m2	BIO 1 100	10 (1 11)	04 (1 11)	201	2	99	1,896	75	13.33							
					3	113	1,871	62	16.13	17,963	38,229	0.58	1.12	86.54	680*	1,124
					4	127	2,587	56	17.86	,	00,220	0.00		00.0		.,
					5	134	2,475	53	18.87							
					Final	155	7,192	47	21.28							
					1	84	924	86	11.63							
	5 Bio Floc	9 (PW)	36 (PW)	280	2	99	1,455	74	13.51	12,371	49,484	0.48	1.11	102.35	680*	1,031
					3	113	1,324	61	16.39							
2,500 m2		3 (BL)	12 (BL)		4	127	1,448	57	17.54	,	Í					,
					5	134	1,043	54	18.52							
					Final	155	6,177	50	20.00							
_	Die Elee	7 (PW)	28 (PW)	145	1	110	1,166	51	19.61	0.545	00.400		4.40	86.35	000*	055
6	Bio Floc	3 (BL)	12 (BL)		2	124	367	49	20.41	6,545	26,180	0.50	1.10		680*	655
2500 m2		0 (D)(1)			Final	127	5,012	47	21.28			<u> </u>				
_	_	9 (PW)	/ 26 (DM/)	6 (PW) 145	1	110	892	61	16.39	0.045	00.400		440	400.0		FF4
7	Bio Floc	3 (BL)	12 (BL)		2	124	323	57	17.54	6,615	26,460 0.50	1.10	100.8	680*	551	
2500 m2					Final	130	5,400	54	18.52							
										82,849	29,560	0.53	1.13	88.1		

Nyan Taw, et al, GAA Sep/Oct2008 Nyan Taw et al, WAS 2009 Mexico

BIOSEURE MODULES Arca Biru, Blue Archipelago

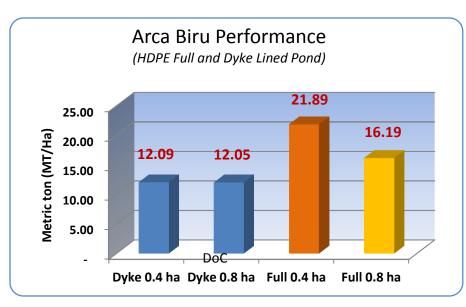
HDPE lined ponds with center drain, secured outlet gates & Main supply canal

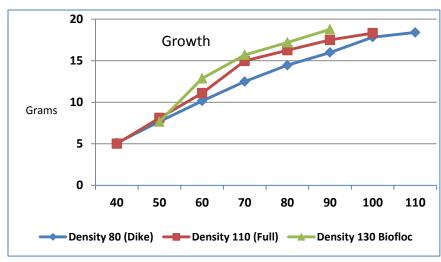
Sub inlet

250 & 1000 micron screen net

Nyan Taw, Biosesurity....GAA Nov/Dec 2010 Nyan Taw, et.al. MalaysianGAA March/April 2011

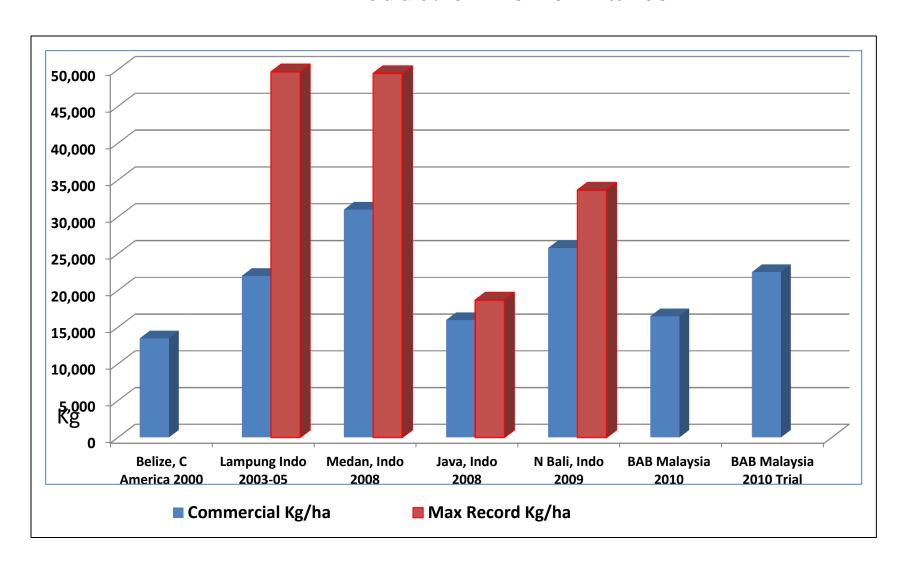
Biosecurity - crab fence & bird scare lines




Pond out let gate

HDPE Lined secondary supply canal

PERFORMANCE - Blue Archipelago, Malaysia



PRODUCTION PERFORMANCE OF	ARCA BIRU FARM						
Production Parameter	System/size/type						
Floduction Farameter	Biofloc 0.4 ha HDPE	Semi-Biofloc 0.8 ha HDPE	Conven 0.8 ha HDPE Dyke				
No of Ponds	2	19	119				
PWA Energy (Hp)	14	24	20				
Stocking Density	130	110	83				
DOC (days)	90	101	111				
SR (%)	89.16	81.35	83.19				
MBW (gr)	18.78	18.31	17.80				
FCR (x)	1.39	1.58	1.77				
ADG (gr/day)	0.21	0.18	0.16				
Avg Harvest tonnage (kg)	9,006	12,950	9,616				
Production (Kg/Ha)	22,514	16,188	12,019				
Prod per power input (Kg/Hp)	643	540	481				

Nyan Taw, et.al. GAA March/April 2011

BIOFLOC IN SHRIMP FARMING

Production Performance

PERFORMANCE Nursery/ GO, CPB Indonesia

Description	Stock Density (pcs/m ²)					
Description	550	550 130		130*		
Tank (72 m ²)	2	2	3	3		
Initial MBW (g)	4.9	1.7	0.16	0.16		
Period (day)	57	90	125	125		
Harvest Biomass (kg)	374.0	151.0	183	137		
Final MBW (g)	13.8	18.4	14.3	14.3		
FCR (exclude GP)	1.2	1.0	1.8*	1.6*		
Survival rate (%)	66	88	89	102		
ADG (g/day)	0.16	0.19	0.11	0.11		
Productivity (kg/m ²)	5.2	2.1	2.5	1.9		
Productivity (kg/Ha)	51,893	21,001	25,432	18,993		

Shrimp harvested

Raceway

Culture performance in HDPE lined nursery tanks (Floc system)

Nyan Taw, 2004

APPLICATION OF BIOFLOC TECHNOLOGY

Indoor facility, Indonesia

- 1. Shrimp feed trials using transferred biofloc
- 2. Small scale experiments at request
- 3. Freshwater tolerance experiments
- 4. Nursery stage experiments

SUPER-INTENSIVE (RAS)

Ocean Institute, Hawaii Moss (2006)

Stocking Density 300 /m3

FCR 1.49

Size 24.7 g

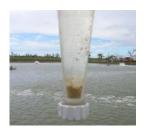
Production 7.5 kg/m3

Texas A & M University Samocha (2009)

Stocking Density 450 /m3 FCR 1.52 Size 22.36 g

Production 9.37 kg/m3

P. monodon CULTURED IN BIOFLOC


Can P. monodon be cultured in biofloc systems?

- Typical production in ponds with a stable floc and stocked with about 45 PL/m² was 10 to 12 t per hectare
- Target harvest weight 35 g
- FCRs when shrimp were 30 g was 1.3:1 (excluding molasses added to pond)

From:

David M. Smith, et al, 2008

Development of protocols for the culture of black tiger shrimp, *Penaeus monodon*, in "zero" water exchange production ponds

ECONOMICS

from 2 to 2.5 cycles/ year. More revenue.

More sustainability = Higher production

More efficiency = less energy cost

Lower CV = More productivity

Energy saving in water pumping

The more the profit the better

Less production cost = more profit

Feed mill should include grain pellet for biofloc

with which sustainable sales could be secured.

Strong red = Better price

Shrimp farmers' view - Saving is profit also						
	BIOFLOC	AUTOTROPHIC	REMARKS			
Production (MT)	22 MT/ Ha	21 MT/ha	Increase in production = more profit			
Growth (gms/day)	0.16 to 2.1	0.13 to 0.16	Larger shrimp size = better price			
FCR	1.1 to 1.3	1.5 to 1.7	Lower FCR = lesser feed cost. FCR 0.1 = 4% of feed cost (approximately).			
DoC (Days of Culture)	90 -100 days	110-120 days	Less DoC = increase production cycles (eg			

400 - 600 Kg/HP

Salmon scale < 24

Flush out > 10 %

Minimum or flow

Standard Autotrophic

CV > 25 %

through

< 30 %

Normal sale

680 - 1,100 Kg/HP

Salmon scale > 28

Flush out < 1.5%

Zero water exchange

CV < 25 %

> 35 %

< 15-20 %

than Autotrophic

Less sale but more

sustainable sale

Energy Efficiency (HP)

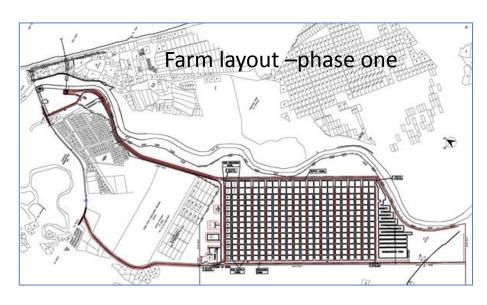
Shrimp color (red)

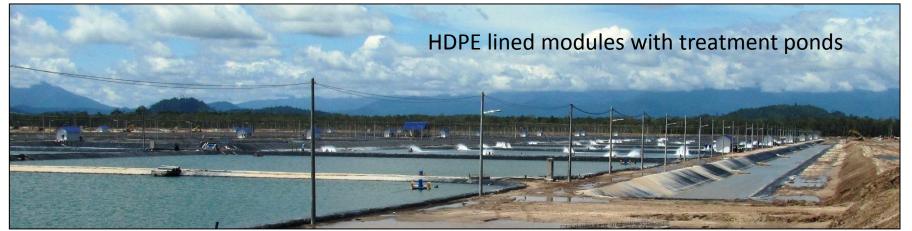
Stability

Sustainability

Gross profit

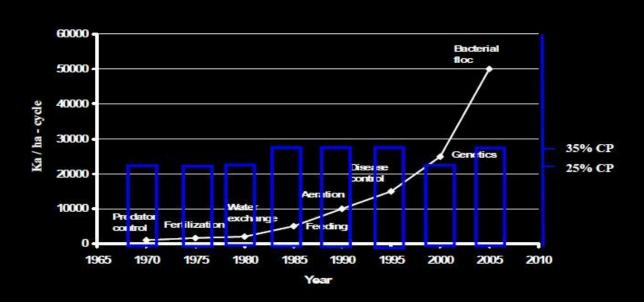
Water exchange


Production Cost


Feed Mill - production

iSHARP INTEGRATED SHRIMP FARMING PROJECT,

Malaysia (Potential for Biofloc Technology)


ACKNOWLEDGEMENTS

The author would like to give sincere thanks to Mr. Abu Bakar Ibrahim (CEO) and Mr. Christopher Lim (COO), Blue Archipelago for their interest and support.

The staff and members of Blue Archipelago, Malaysia for their support to make this presentation possible.

Thank You

SHRIMP PRODUCTION IMPROVEMENT

From Nates & Tacon 2007

Presentation Title: RECENT DEVELOPMENTS IN BIOFLOC TECHNOLOGY IN SHRIMP CULTURE AND ITS ECONOMICS

Nyan Taw

Abstract: #27

Session Name: Biofloc Culture Systems (Session #_ 7)

Session Date: Thursday, March 1

Time Assignment: 9:00 AM